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Abstract: The responses of artificial neural networks to experimental and model-generated inputs are

compared lbr detection of damage in twisted fan blades using electronic holography. The training-set

inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The

outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement

vectors from a finite element model. Artificial neural networks have been trained in the past with

computational-model-generated training sets. This approach avoids the difficult inverse calculations

traditionally used to compare interference fringes with the models. But the high modeling standards are

hard to achieve, even with fan-blade finite-element models.

Keywords: Neural Networks, interferometry, Electronic Holography, Image Processing,

Speckle Metrology

1. Introduction

There is a continuing need to convert whole-field data such as interference patterns of flows and structures into

two and three-dimensional distributions of properties. The traditional viewpoint is that the instrument system should

convert the raw optical pattern to a two or three-dimensional distribution of the quantity of interest such as velocity.

density, displacement or strain. The instrument-derived results are then compared ostensibly with predictions of

computational models or are used directly to operate test facilities. That viewpoint no doubt is most friendly to the users

of optical measurement instrumentation, but suffers from some serious practical and scientific defects. The conversion of

interference patterns into densities of flows or strain fields of structures, for example, is generally ill posed and requires

often-arbitrary regularization procedures. The measurement process invariably contains some untested assumptions: one

classical example is the assumption in laser anemometry or particle image velocimetry that seed particles track flows. A

working instrument may not be well matched to the environmental conditions or operating conditions required by a user.

Finally, a whole-field optical measurement system may not have the processing speed to meet real-time requirements.

An alternative viewpoint of whole-field data conversion has been under test at NASA Lewis Research Center for

a number of years. The concept is to compute an optical pattern by combining a phenomenological model of a flow or

structure with a model of the optical measurement process. Measured patterns are then compared with the computed

patterns to identify a best match between the measured and model-generated flow or structural conditions, or whether a

match even exists. This approach avoids ill-posed inverse calculations. The ultimate user or customer provides the

phenomenological models and is directly involved in determining whether the instrument will meet customer

requirements. This approach can be added to existing optical measurement systems, but it requires a fast interface

between the computational-model-generated patterns and the measured patterns.

Artificial neural networks, particularly the feedforward neural network, are being tested at Lewis as last

interfaces between computational-model-generated fringe patterns and measured fringe patterns. Our initial application of

the neural network interface was to computed tomography (Decker, 1993). Neural networks have been used during the

past two years to process the time-average characteristic patterns computed from electronic holograms o1 vibrating

structures. Neural-net processing of these holograms constitutes a complete test of the concept of using a neural-net

interlace lbr flows or structures. Finite element models of vibrating fan blades are the phenomenological models. An

optical model of electronic holography, complete with techniques tk_r handling the laser speckle effect, has been developed

(Decker et al., July 1997). There is a strong customer interest in the technique and a willingness to participate in

developing the neural net interface since there is a need to display strain or damage information for fan blades. Finally,

neural net processing of characteristic patterns has been demonstrated at up to 30 frames per second (Decker et al., May

1998), thereby providing a fast interface.

The lbllowing question has surfaced during this work with neural-net interfaces: Do the finite element models

normally used to design fan blades generate sufficiently accurate patterns to train the neural networks? A major reason 1or

testing the neural net concept with structural models was the assumption that structural m_xtels would be better known

than flow models. As mentioned in the references above, the assumption proved correct lbr cantilever plates. But recent

work with twisted blades has indicated that normal design models may not provide enough accurate detail to train the
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neural-netinterlace,particularlyattheresolutionsrequiredtbrdamagedetection.Neuralnetshaveproventobevery
exactingforcomparingmodelgeneratedpatternswithmeasuredpatterns.

Thispaperis a comparisonof neural-netprocessingof experimental-examplewithmodel-generated
characteristicpatternsoftwistedfanblades.Thebladeswereconstructedspecificallyforthesetests,buthavevibration
propertiessimilartothepropertiesofbladesinbladeddisks(blisks).Threebladeswereconstructed,andonebladewas
intentionallycrackedthroughshaker-inducedhigh-cyclefatiguefailure.Tl-_echaracteristicpatternsweregeneratedusing
two-frameelectronictime-averageholography,wherethephaseofthereferencebeamwasshiftedby180degreesbetween
alternateframes.Subtractionoftheframesthenyieldedhigh-contrastcharacteristicpatterns.

2. Neural-NetTrainingRecords
Thearchitectureof the artificial neural networks and the composition of the training records have been discussed

in detail previously (Decker et al., July 1997), (Decker et al., May 1998). The computer platforms, neural net software

and video were also discussed. Both publications treated cantilever plates as examples: whereas this paper treats a twisted

blade as an example. The previous publications discussed model-trained artificial neural networks exclusively; whereas

this paper discusses both model and experimental-example trained neura_ nets. The following discussion reviews the

neural nets and training records briefly and introduces some new features.

Software created at NASA Lewis Research Center is used to generate the training records and training sets

automatically. This software, together with the package used to create the fcedforward neural networks and the video used

to record the holograms, are rcsident in a SGI 02 workstation. The combination has been demonstrated at up to 30 frames

per second for neural-net processing of characteristic patterns.

The training sets relevant to this paper contain a few hundred training records. Each training record contains an

input vector and an output vector. The inputs are normalized in the range 0 to I , and the outputs are normalized between

0.2 and 0.8 lbr the sigmoid (logistic) transfer functions of the neural netw¢_rks. Other neural-net architectures have been

trained. But the compactness and noise handling ability of the feedforward net makes it definitely superior for processing

the speckled characteristic patterns from time-average holography.

INSERT

(a) (_)
Fig. 1. Characteristic or time-average patterns of first mode of twisted blade: (a) at CCD-camera

resolution, where the insert shows the region measured for cJ ack detection, (b) at finite-element
resolution.

The input vectors always are finite-element-resolution characterist,c fringe patterns with the scan lines packed in

order. The design-grade finite element models and workstations used to design compressor blades handle a maximum of

about 50(X)elements. Hence, the input vectors will contain a few hundred t_. a few thousand pixel values. Figure 1 shows

both CCD and finite-element resolution characteristic patterns (not at the s tme vibration amplitude) lor the first bending

mode of the twisted blade used as an example in this paper. The pixel sizts in the finite-element-resolution pattern were

calculated from the design model described in the next section. The input vector might contain a lull-blade pattern or a

pattern from a magnified small region of the blade. The insert in the CCD resolution pattern in fig. 1 was zoomed and

measured for crack detection, lbr example. The CCD cameras arc always 640x480 pixel NTSC cameras.

As reported previously (Decker et al., July 1997), the neural networks can he taught to ignore the laser speckle

effect. To accomplish this objective, independent speckle patterns, equal in number to about 10 percent of the number of

linearly independent input vectors, must be presented during training. Hence, a training set composed of 1000-pixel inputs

would need approximately 100 linearly independent speckle patterns per ch_ racteristic pattern. Experimentally, sampling
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atrandomlocationswithinthelargepixelsofthefinite-element-resolutionarrayis usedtogeneratetheindependent
specklepatterns.Thisstepisnecessarysincethespecklepatternsremainhighlycorrelatedfromframetoframeonthe
vibrationisolationtableusedtoconducttheexperiments.Theoretically,arandomnumbergeneratoris usedtocreate
linearlyindependentspecklepatternsfromthemodels(discussedinthenextsection).Samplinggridsandpixelsizesare
determinedfromthefiniteelementmodelsandaregenerallynotuniform.Figure2plotsthesamplinglocationsonthe
twistedbladesdiscussedinthispaper.

Fig.2. Finite-element-resolutionsamplinggridfortwistedblades.

Theoutputvectorsareeithermodelgeneratedpatternsordamageflags.Finite-element-model-generatedstrain
patternscanbeusedastheoutput.Butthesecondspatialderivativesofthesensitivity-vector-projecteddisplacement-
amplitudevectorsofthevibratingobjectaremoreappropriatetbrelectronicholography.Thisclaimcanbeunderstoodby
notingthatthevisualizedcharacteristicpatternisproportionalto

(SpecklePattern) X Jd2nK "8)

where K is the holographic sensitivity vector (Vest, 1979) and 8 is the displacement-amplitude vector. The second

derivatives of K'8 were discovered to provide sensitive detection of blade cracking. Interestingly the bending induced

strain of a plate can be computed from the second derivatives of the normal components of 8 in a local coordinate system.

But holography visualizes a projection of 8 on K rather than the normal. The displacement distributions are obtained

from the finite element model. Figure 3 shows chord-wise second derivatives of the sensitivity-vector-projected

displacements from the insert in fi_z. 1. Model predicted patterns are shown for cracked and undamaged twisted blades.

(a)

Fig. 3. Model-predicted

(b) for cracked blade.

(b)

chord-wise second derivative of IK8 of fig. 1: (a) for undamaged blade,

These plots are slightly distorted by being plotted on a unilbrm grid. The output vector of the training record will then

contain a few hundred to a few thousand components. Sometimes, a simple indication or flag whether a blade is damaged

or undamaged is adequate. The output of the net, for example, can be a three-component vector. One component indicates

a cracked blade: one component indicates an undamaged blade: and one component indicates that the pattern is not known.

We display this information by coloring the fringe patterns red, green and yellow, respectively. The damage flag can bc

used with model generated or experimental samples.

The artificial neural networks then need to learn several hundred training records containing a few hundred to a

few thousand input nodes and possibly a few hundred to a few thousand output nodes. The optimization of the nets was

discussed in a previous publication (Decker et al., July 1997). The current results were obtained with single hidden-layer
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feedforwardneuralnetworkscontainingfewhidden-layernodes(sparsenes).About3 hidden-layernodesarerequired
lbreachcharacteristicpattern(noteachspecklepattern).Trainingtimeol theSGI02workstationwastypicallyafew
minutesfortheentiretrainingset.

The effectiveness of a computational model-to-test interface de_ends on the accuracy of the models. These
models are discussed in the next section.

3. Models

3-I. Characteristic Fringe Pattern

The models of the characteristic fringe pattern have been defined in the references. The models are described

briefly here. and some new features are discussed.

The quantity processed by the neural networks is the absolute value of a finite-element-resolution sampling of

the expression

(Speckle Pattern) X Jo(2nK'_).

That expression would be generated experimentally by subtracting two 180=degree phase-shifted electronic holograms. The

holograms are obtained from two adjacent frames or even and odd fields of the video. The work discussed in this paper

was done entirely with frames. Evaluating the dot product of the sensitivity vector K and the displacement fi requires

the positions of the illumination source and the imaging lens, the geometry and sampling grid of the blade surface, and the

vector-displacement field. The last two items are supplied with the finite element model described below. The finite

elements and sampling grid generally are non-uniform; hence the models, the measurements and the display must handle

non-unilbrm pixel sizes. The model has been supplied for the whole blade. Zooming on a small region of the blade

requires interpolation on the generally non-unilbrm grid. Cubic interpolation is used for displacements and linear

interpolation is used tbr grid coordinates, the components of the sensitivity vector and strains.

There are many potential complications in modeling the image,,, and speckle patterns, including non-uniform

illumination, aberrations, camera pixel saturation, distortion, quantizatior, error, pixel response variations and speckle

statistics. So lar. the neural nets have proven to be quite robust in the presence of most of these effects, and the speckle

effect has offered the major challenge. Speckle statistics, in principle, depend on the reference-to-object beam ratio and

the surface microstructure of the blades (Goodman, 1975). For small beam ratios, a simple model is adequate. The

intensity is distributed according to a negative exponential, and the phase is uniformly distributed in (0, 2n) . Random

number generators select these quantities independently from pixel to pixel. In fact. provided that enough independent

speckle patterns are included in the training set, variations in the speckle : tatistics do not seem to have a large effect on

the perlormance of the nets (Decker et al., July 1997).

The macroscopic structure of the characteristic fringe pattern d_:pends primarily on the finite element model

described briefly in the next section.

3-2. Finite Element Model of Twisted Blades

A blade model with an airfoil section representative of a wide-chord fan was used to produce training sets lbr the

neural network. The blade geometry is of constant cross-section and has a twist that varies linearly from 0 degrees at the

root. to 30 degrees at the tip. Blade dimensions are chord, 8.72 cm. (3.433 in.); maximum thickness to chord ratio, 0.037;

and span, 15.24 cm. (6.0 in.). A damaged and an undamaged blade were simulated with finite-element plate models.

Two finite element blade models were generated, one with a simu ated crack and the other without. The crack is

located at the root and extends from 87% to 100% of chord. The blade_ were structurally modeled as cantilevers by

constraining the root nodes in all six degrees of freedom, except in the sirr ulated crack region. The crack was simulated

by releasing the constraints for all degrees of freedom at the nodes in its re,on. The finite element models have a 20x42

mesh of quadrilateral elements along the mid-thickness of the airfoil se:tion (fig. 4). The blade material is 6061-T6

Aluminum with a Young's Modulus of 66.19 GPa (9.6xl06psi), a Poisson" _Ratio of .33, and a Mass Density of 2712.832

kg/m _ (2.536x10 _ Ibs sec-/m ). Figure 4 shows both the blade mesh and thz simulated crack location.

MSC/NASTRAN Solution 103 was used to solve for eight normal modes and frequencies, although only the first

mode at about 199 Hz was used tbr this work. The eigenvectors were norm_dized with respect to the generalized mass. An

output file of the eigenvalues, eigenvectors (displacements). and modal ;trains was then provided to train the neural

network. A file of blade surface coordinates was also provided.
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Fig. 4.

3.433" _ Crack
Location

Finite-element model of twisted blade showing crack location.

4. Performance of Neural Net for Detecting Blade Cracking for Measured and Model-Generated Characteristic
Patterns

Three sample blades were manufactured according to the finite-element design discussed in sec. 3 in order to test

the perlbrmance of the neural networks. The blades were painted flat white. The surface pattern from the brush strokes

proved to be non-critical. Figure 5 shows that the blade and the blade mount are in fact machined from the same block of

aluminum. The mount is held in a vice for subsequent tests. The vice torque is set to the same value for all tests. One of

the blades, hencetbrth called blade 1, was intentionally cracked by inducing high-cycle fatigue failure on a shaker table

vibrating at the frequency of the first mode (about 199 Hz). The crack developed in the region shown as an insert in

fig. 1. The other two samples, henceforth-called blades 2 and 3, were undamaged.

NASA/TM-- 1998-208814
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Initially,testswereperformedon the whole-blade characteristic patterns of the first mode as shown in fig. I.

Maximum displacement amplitudes ranged from a small traction of a microa to 50 microns. An interferometer was used

to measure and set the vibration amplitudes. Hybrid training sets were used where the input characteristic patterns were

recorded experimentally as discussed in sec. 2. The output vector contained the chord-wise second derivative of the

model-generated field K'8 as discussed in sec. 2. Second derivatives ,,-,ere evaluated numerically. Neural networks

trained with the whole blade patterns generally could not distinguish the _mdamaged blades from the cracked blade. A

change in approach was required.

The test procedure was changed alter noting that the resonant frequency of the cracked blade decreased from 199

Hz to 195 Hz as the vibration amplitude was increased. The frequency change first appeared when the amplitude of

vibration was increased above 50 microns. However, the contrast of the whole-blade Bessel characteristic pattern became

tt_ small when the vibration amplitude was increased above 50 microns. Hence, the decision was to zoom onto the insert

region shown in fig. 1 for subsequent measurements. The amplitude of vib:ation remained small and the pattern contrast

remained high in the zoomed region. The neural networks began to distinguish the cracked blade from the undamaged

blade at tip vibration amplitude of 50 microns. The settings lbr the remainir_g discussions were 273 microns. It should be

noted that the tip deflections were inferred at amplitudes larger than 50 microns. The amplitude was measured using the

interferometer near the insert region shown in fig. 1, and the finite element model was used to estimate the tip deflection

The measured region in the insert in fig. 1 extended span-wise from the mount and chord-wise to the right edge

of the blade. The width of the region equaled 0.5 in. (1.27 cm) and the height equaled 0.438 in. (I.111 cm). The

perlormances of two neural-net architectures were tested. The composition _f the training records was discussed in sec. 2.

The inputs consisted of experimentally measured patterns from blades 1 and 2. A 903 node input vector was used. Blade

1 was also used to generate zero-amplitude training records. One hundred training records per blade or condition were

recorded in accordance with the ten-percent rule mentioned in sec. 2. The two net architectures differed only in the output

vectors. The chord-wise second derivatives of the mc,del-generated field K'_ were used in the output vector lor one

architecture. A simple color-coded output was used for the other architecture. In terms of normalized outputs, the code

was (0.8, 0.2. 0.2) for green. (0.2, 0.8, 0.2) lbr yellow and (0.2, 0.2, 0.8) or red. For display purposes at 30 frames per

second, the model-generated output was displayed as a density plot. The color code, on the other hand. was used to set the

color of a 30-frame-per-second display of the characteristic pattern at CCI) or finite-element resolution. The color was

green for undamaged blades and red for cracked blades. The yellow color was used to indicate either the zero amplitude

(speckle noise only) condition or a no-decision condition. The maximum component of the color vector was required to be

0.8+0.05, otherwise a no-decision was declared. Both neural-net architectures contained 6 hidden-layer nodes.

(a) (b)

Fig. 6. Measured-region experimental characteristic patterns: (a) for undamaged blade,

(b) for cracked blade.

Figure 6 shows the mcasured region experimental characteristic pttterns for the undamagcd and cracked blades.

Figure 7 shows model generated characteristic patterns for an undamaged bl _tde at two different finite clcmcnt resolutions.
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41 X 85 51 X 101

Fig. 7. Model-generated characteristic patterns for an undamaged blade at two

finite element resolutions.

Both neural-net architectures pertormed well when presented with blade 1. 2 or 3 experimental characteristic

patterns at tip deflections of 273 microns. But neither neural network performed well when presented with the model-

generated characteristic patterns.

5. Discussion of Pertormance of Neural Nets

The experimentally trained neural networks did not respond correctly to the model generated data, and the reason is

clear from comparing fig. 6 with fig. 7. The finite-element-model and experimental patterns are not similar in the

measured region.

In fact, the twisted blade results are disappointing in two ways when compared with previous work with cantilever

plates. First, twisted blade damage was not detectable from the entire blade characteristic pattern: whereas damage was

detectable from an entire cantilever-plate pattern at low excitation amplitudes. The expectation, following the cantilever-

plate work, was that the entire-blade characteristic pattern would serve as a neural-net-processed gauge of blade damage.

Second, the finite element models used for design did not reproduce the correct twisted blade patterns. The models did

produce the correct cantilever patterns. Figure 8 (Decker et at., July 1997) compares model generated and measured

characteristic patterns for the first chord-wise mode of a cantilever. The model-generated and experimental patterns look

quite similar, and a neural network can be trained to distinguish damaged from undamaged blades using the entire-

cantilever characteristic pattern.

Fig. 8. First chord-wise mode: (a) from a silver halide hologram of a vibrating blade, (b) from electronic

holograms of a vibrating cantilever, (c) from a finite-element-resolution model of a cantilever plate,

(d) from electronic holograms at finite-element resolution.

6. Concluding Remarks

Artificial neural networks could not be used to create a practical model-to-experiment interlace when trained

with a design-grade finite element model. The model could not create the detail that electronic holography can measure.

There are fracture mechanics models that generate better structural detail, but one of our objectives was to create a good

design-to-test interface. The workstation-resident design-grade models were not adequate for this purpose.

The nets trained with experimental inputs were able to detect structural damage and to display the damage using

model- generated or damage-flag outputs. Hence. the nets are g(×xJtools for testing whether a model is adequate: train the

nets experimentally and then use the model to generate inputs to be evaluated by the trained nets,

Experimentally trained nets can also be used to create a record of an undamaged part to be used for later

inspections.
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A question relevant to this conference concerns the potential usffulness (not merely the possibility) of using

model trained neural networks for flow applications. For example, are model trained neural networks useful for

performing tomography? The best judgement at this time is that the reural-net application can be useful for flow

conditions that remain essentially the same year after year. An example would be a wind tunnel operated essentially the

same way for years. Then the neural net can be trained with much effort to respond to the important details and to ignore

the irrelevancies, just as a net was trained to ignore the laser speckle effect.
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